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Suppression of forced chatter vibration in
simultaneous double-sided milling of flexible plates

Tatsuya Mori*, Tomoki Hiramatsu*™* and Eiji Shamoto**
*3.152, Hino, Daito, Osaka 574-0062, Japan, e-mail: -mori@amistar.co.jp
** Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, e-mail: shamoto@mech.nagoya-

w.ac.jp

Abstract: This paper presents a new method to finish flexible plates with high accuracy
and high productivity. Precision steel plates are finished conventionally by face milling
with electro-magnetic chucks. It is difficult to improve flatness of the flexible plates,
because they deform to fit the chuck surfaces while clamped. The authors have applied
simultaneous double-sided milling to solve this problem, but it causes forced chatter
vibration which is not allowed in precision finishing. Thus, the new method is proposed
and verified to suppress the forced chatter vibration, in which the both surfaces are
finished simultaneously with single tooth milling cutters with synchronization so that
the thrust forces are cancelled out on the both sides.

Keywords: Plate materials, Simultaneous double-sided milling, Forced chatter vibration

1. INTRODUCTION

Precision metal plates are widely used in various industries as basic mechanical parts. In
most of conventional processes, rolled plates are finished by face milling or surface
grinding while fixed on flat electro-magnetic chucks. The workpieces, e.g. rolled plates,
are not accurately flat, and thus they are deformed to fit the flat chuck surfaces while
they are chucked as shown in Fig. 1. They spring back after finished and released from
the chuck. Therefore, it is difficult to improve the flatness of the plates by the

conventional method.
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Figure 1; Conventional machining of precision steel plates.

The authors have applied simultaneous double-sided milling to machine the
precision metal plates in order to improve the flatness and the machining efficiency
drastically at the same time. The simultaneous double-sided milling technology has
been utilized to finish two faces of rigid blocks simultaneously with high efficiency, but
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Figure 2; Photographs of double-sided milling process and machine.

it is normally difficult to apply this technology to flexible thin plates because their
flexibility causes the chatter vibrations [Altintas, 2000; Davies ef al., 2000; Sébastien et
al., 2008; Suzuki et al., 2009]. The authors have already developed a new method to
suppress the regenerative chatter vibration in roughing by rotating the two milling
cutters at slightly different speeds [Shamoto, et al., 2010]. However, light forced chatter
vibration remains, which is not allowed in finishing.

Therefore, the present research is focused on this forced chatter vibration. Single
tooth milling is employed on the both sides in order to avoid disturbance force from
additional teeth. Furthermore, the two spindles are synchronized so that the left and
right teeth begin to cut at the same time and the cutting forces are cancelled out in the
through-thickness direction. A prototype machine and a corresponding analytical model
are developed, and the proposed technique is verified experimentally and analytically in
the present study.

Cutting direction

Feed direction |

o ™

(a) Single-tooth double-sided milling (b) Multiple-tooth double-sided milling
without synchronization with synchronization
Figure 3; Photographs of thin workpieces machined with forced chatter vibrations.



2. DEVELOPMENT OF DOUBLE-SIDED MILLING PROCESS AND
MACHINE FOR THIN PLATES

Fig. 2 shows the double-sided milling process and machine for thin plates developed in
the present research, where the thin plate is fixed vertically with the thinner clamping
plate, and then the both sides of the plate are machined simultaneously by the left and
right face mills. Compared with the conventional method shown in Fig. 1, there are two
remarkable advantages in the present method. The one is high machining efficiency.
The efficiency is increased about three times, since the both sides are machined at the
same time and it is not necessary to reverse the plate. The other advantage is high
accuracy. The flatness is improved since the clamping in the across-the-width direction
does not cause large deformation of the plate unlike the conventional electro-magnetic
chuck.

However, there is a crucial disadvantage of low stiffness, which causes the forced
chatter vibration in finishing as shown in Fig. 3. Fig. 3(a) shows a workpiece surface
finished by single-tooth double-sided milling while the both spindle rotations are not
synchronized. Because of the non-synchronization, the thrust forces were not cancelled
and the thin workpiece began to vibrate when each tooth engaged with the workpiece.
The white arrows in Fig. 3(a) show the vibration marks caused by the tooth engagement
on the other side. Fig. 3(b) shows another example of forced chatter vibrations, which
occurred in multiple-tooth milling while the spindle rotations were synchronized so that
the teeth on the both sides engaged and disengaged at the same time. Since the multiple
teeth engaged with the workpiece at the same time on each side, the slight vibration
mark D shown in the figure was left on the surface in the moment that the successive
teeth engaged with the workpiece at its upper edge. Note that the thrust forces can not
be cancelled perfectly on the both sides, even though their rotations are synchronized.
The vibration mark E was generated when the preceding teeth disengaged at the right
edge, while F was formed due to engagement of the successive teeth at the left edge.

In order to minimize the forced chatter vibrations, a method is proposed, in which
the single-tooth double-sided milling is applied with synchronization of the spindles so
that the teeth begin to cut at the same time on the both sides. The spindles are

Cutter | B 5 B PR -
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Syncronization

Rotary encoder 8192/rev
Figure 4; Developed control system to synchronize left and right spindles.



synchronized by the control system shown in Fig. 4. The both spindles and motors have
rotary encoders as feedback sensors. The right spindle is controlled as a master to run at
a specified speed, while the left spindle is controlled as a slave to follow the right
spindle. Before machining, the left and right teeth are set exactly at the same rotational
position.

3. ANALYTICAL MODEL OF FORCED CHATTER VIBRATION

The single-tooth double-sided milling process is schematically illustrated in Figs. 5(a)
and (b). The left and right teeth engage with the workpiece without time difference in
the ideal process as shown in Fig. 5(b), while they engage with slight time difference in
the real process as shown in Fig. 5(a). This slight time difference causes imperfect
cancellation of the thrust cutting forces, see Fig. 5(c), and consequently it generates
impulsive force to excite the slight chatter vibration as shown in Fig. 5(d). According to
this simple cutting force model, the chatter vibration x(f) excited by the force f{f) can be
estimated by convolution integral of unit impulse response g(f), as expressed by the
following equation.

x(1)=[ygt-r)f(r)dr (1)

where the unit impulse response g(f) was identified experimentally in the present study
by the impulse response method. It is assumed for simplicity that the thrust force f; is
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Figure 5; Model of forced chatter vibration.



constant, because change in the thrust force is negligible in short time difference
between the both teeth. The thrust force at the beginning of cut in each cycle was
measured in single-sided milling by using a dynamometer (9253A23 made by Kistler
Instrument Corp.), and it was identified as f;=348 N.

4, EXPERIMENTAL AND ANALYTICAL VERIFICATION

A series of machining experiments was carried out to verify the proposed method by
utilizing the developed double-sided milling machine. The single-tooth milling cutters
were attached to the both spindles. Uncut chip section in the cutting process is
illustrated in Fig. 6, and the experimental conditions are summarized in Table 1. The
time difference between the left and right teeth was set as pulse difference between the
rotary encoders fixed to the spindles. As the

encoder outputs 8192 pulses/rev and the R
spindle rotates at 200 min’', one pulse E R, * /
difference corresponds to about 0.0366 ms. d m

Table 1 shows three different values for this T Workoi
pulse/time difference. The first one is the set orkplece
value, which was input to the controller. The ¢ w

second is the actual value measured with the d : Axial depth of cut
rotary encoders, i.e. feedback signal. The w * 'Width of tooth
third is the value measured as phase shift R, : Nose radius

between the chatter vibration marks left on
the both surfaces, which is described below
referring to Fig. 11(b). The pulse difference
was set to be zero in the experiment No. 1,
which is desired to suppress the forced chatter vibration. Its effect on the force chatter
vibration was investigated in the experiment No. 2 by setting the difference to be 6

R, : Wiper radius

Figure 6; Uncut chip section.

Table 1; Experimental conditions.

Experiment number 1 2 3
Pulse/time difference between Set value 0/0 6/0.22 Single-
left and right teeth Encoder signals 1/0.037 7/0.26 sided
number of pulses/ms Chatter marks Unclear | 7.4/0.27 milling
Width w mm 4
Axialradial rake angles deg 15/-15
Tool Nose/wiper radius R,,/R,, mm 1/1000
Material Cermet
Tool diameter mm 307.5
Axial depth of cut & mm 0.1
Cutting conditions Spindle speed min” 200
Feed speed mm/min 800
Workpiece material Rolled steel (JIS:SS400)
Dimension of workpiece mm 1.450 x W200 x T16.2L1T16.0




pulses and in the experiment No. 3 by applying the single-sided milling.

The transfer functions of the workpiece structure were measured by the impulse
response method with an impulse hammer (086C03 made by PCB) and an
accelerometer (352C68 made by PCB) after each machining experiment at the positions
A, B and C shown in Fig. 2(b), where the severest chatter marks were observed in many
cases.

Fig. 7(a) shows the fransfer functions measured at the position A after the
experiments No. 1-3. It shows that the transfer functions were almost the same in the all
experiments. Fig. 7(b) shows the transfer functions measured at the positions A, B and
C after the experiment No. 1. The transfer functions measured at the positions A and C
were almost the same, while that at B was different from the others. It does not have the
peak at about 400 Hz, because this is a torsional resonant mode and it has a node at this
central position. The vibration was measured during machining with an accelerometer
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(356A01 made by PCB) attached on the exit side of the workpiece, see Fig. 2(b).

Fig. 8 shows the pulse difference measured with the rotary encoders and the
measured acceleration in the experiment No. 1. Though the pulse difference was set to
be 0 in this experiment, it was fluctuated slightly due to the periodically exerted cutting
force. The figure shows that the difference was | pulse in each instant of engagement.

FFT analysis of the measured acceleration was conducted, and some of the results
are shown in Fig. 9. The broken lines show harmonics of the tooth passing or spindle
rotation frequency. The results indicate that the chatter vibrations were synchronized
with the spindle rotation and that they were forced by the periodic milling force.
Furthermore, the forced chatter vibration was significantly reduced in the experiment
No. 1 by controlling the pulse difference to be zero.

The finished workpiece surfaces were scanned and measured by utilizing a laser
displacement sensor (LT9010M made by Keyence Corp.) as a probe on an ultra-
precision machine tool (NIC-300 made by Nagase Integrex Co., Ltd.). Fig. 10 shows the
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measured right surface finished in the experiment No. 1 at position B. Fig. 10 (a) shows
the surface topography, while Fig. 10 (b) shows the surface profile plotted along a tooth
path. There are clear and regular feed marks on the surface. Slight chatter marks are also
visible, but their amplitudes are a few microns at their peaks and they are acceptable in
practice.

In Fig. 11, the profiles measured along tooth paths at the position B by the above
method are compared with the displacements simulated by the simple model described
in the previous chapter. Modal parameters were identified for dominant three modes
whose resonant frequencies were about 200, 220 and 280Hz, see Fig. 7(b). Figs. 11(a),
(b) and (c) show the results of the experiment No. 1, 2 and 3 respectively. The simulated
displacements are plotted with the profiles of the right surfaces, which were finished by
the master spindle. The simulation shown in Fig. 11(a) was conducted with a pulse
difference of 2, and those shown in Fig. 11(b) were done with 6 and 8. The left profiles
shown in Figs. 11(a) and (b) should be symmetrical to the right profiles shifted by the
pulse differences, if the cutting process was perfect except the workpiece vibration. This
is not clear in the experiment No. 1 because the pulse difference is similar to
synchronization accuracy of the developed control system. On the other hand, as shown
in Fig. 11(b), the left profile is almost symmetrical to the right one shifted by the pulse
difference in the experiment No. 2. Fig. 11(c) shows that the single-sided milling causes
large chatter vibration with a peak displacement of about 40 pm, which is not
acceptable for precision plates. The peak displacement of about 40 pm was reduced to
about 10 um by applying the double-sided milling although there was a relatively large
pulse difference of about 7, i.e. synchronization accuracy was low, as shown in Fig.
11(b). As the two cutters were synchronized accurately, the peak displacement was
further reduced to about 4 pm successfully. The simulated displacements agree with the
measured profiles, as shown in the figures. This indicates that the forced vibration
observed in the present process can be understood by the simple model described in the
present study, and that the chatter vibration can be minimized by reducing the
pulse/time difference as well as the cutting force and the compliance.
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Figure 10; Measured profiles of workpiece surface finished in experiment No. I at
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Roughness and flatness of the workpieces machined in the present study was
measured with a contact surface profiler (SJ-201 made by Mitutoyo) at the position A
and with a 3D coordinate measuring machine (BHN700 made by Mitutoyo). The results
are compared with the single-sided conventional milling in Table 2. As shown in the
table, the roughness is less than a targeted value of 12.5 pm Pz in the double-sided
milling, and the flatness is improved about two times by the proposed method.



Table 2; Comparison of roughness and flatness between conventional and present

methods.
Machining method Double-sided Single-sided
Experment No. 1 [ 2 3 - (Conventional)
Width of toothw (Wiper radis R,, ) mm 4 (1000) .67 Straight [ |
Number ofteeth 1 12
Feed speed nnvmin 800 200
Left surface 6.62 12.18 27.98 7.12 856
Roughness Pz pm Right surface 5.57 11.57 - 7.99 8.79
Average 6.10 11.88 27.98 8.12
Lefi surface 0.100 0.110 - 0.210 0.190
Flatess mm Right surfice 0.097 0.111 - 0.206 0.188
Average 0.105 - 0.199

5. CONCLUSION

The precise and efficient method was developed in the present research to finish flexible
plates by applying the simultaneous double-sided single-tooth milling, in which the
thrust cutting forces are cancelled out on the both sides by synchronizing the both
milling cutters. The machine and the analytical model of the simultaneous double-sided
milling with the synchronization control were developed, and it was confirmed
experimentally and analytically that the forced chatter vibration can be suppressed to
the satisfactory level by reducing the synchronization error. Furthermore, it was
contirmed that the flatness of the finished thin plates is improved about two times and
the machining efficiency is improved about three times by applying the proposed
method.
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